WOLFRAM

Wolfram Innovator Award

Wolfram technologies have long been a major force in many areas of industry and research. Leaders in many top organizations and institutions have played a major role in using computational intelligence and pushing the boundaries of how the Wolfram technology stack is leveraged for innovation across fields and disciplines.

We recognize these deserving recipients with the Wolfram Innovator Award, which is awarded at the Wolfram Technology Conferences around the world.

2023

Sandipan Bandyopadhyay

Associate Professor, IIT Madras

Areas: Computational Thinking, Education, Physics

Sandipan Bandyopadhyay is an educator and researcher in the fields of mechanisms and robotics. He specializes in theoretical and computational kinematics, in particular in the domain of spatial parallel manipulators, such as the Stewart platform.

Bandyopadhyay’s research involves highly demanding symbolic computations, for which he finds a trusted partner in Mathematica. In at least 20 of his journal publications, the symbolic capabilities of Mathematica have played a significant role. Moreover, the flexibility of Wolfram Language has allowed him to develop algorithms and modules to explore deeper into algebraic geometry and kinematics and create customized tools for analyzing problems using hyper-complex numbers, such as dual numbers and dual quaternions. He uses the dynamic visualization capabilities of Mathematica to bring virtual robots to life, enabling his students to manipulate them and develop a better understanding of complicated motions of constrained multibody systems.

2023

Australian Christian College

Accepted by: Jeremy Kwok, Director of Technology

Areas: Computer-Aided Education, Education

Australian Christian College (ACC) is Australia’s largest non-government distance education provider, with four schools equipped to provide a hybrid of in-house and fully remote learning. Covering K–12 education, its mission is to have all students flourish to their full potential and be a positive influence on the world. Rather than rely on traditional publishers, ACC wanted more consistent content for online and in-person assessment that showcases the ingenuity of their instructors.

ACC is now rolling out a Wolfram eLearning environment integration in their current Canvas environment. This integration will initially be used for assessments with 1,500 high-school students, which will quickly grow to 3,000 students and beyond as they implement the system for grades 7–12. With ACC’s announcement of a new STEM-focused campus in Western Sydney, this automated assessment system will be even more important in the future as enrollment continues to grow.

2022

Telconet

Telconet, accepted by Igor Krochin, Director

Areas: Business Analysis, Data Analysis, Data Analytics, Data Science, Economic Research and Analysis

Igor Krochin is the managing director of Telconet, the largest telecom company in Ecuador. They own some of the first certified cloud and data centers in Latin America, along with the first fiber-optic cable factory in the region.

Tomislav Topic and Krochin lead Telconet in implementing Wolfram Language solutions in a wide variety of areas, including events log correlations, route analysis and optimization, big data analysis and failure correlation, resulting in better planning and scalability. Telconet continues to build infrastructure and deploy services, including internet connectivity, that help students and educators in the region become empowered with Wolfram technologies, such as the Spanish version of Wolfram|Alpha, by accessing powerful and sophisticated computation from anywhere.

2022

Daniel Sze

Research Fellow, Georgia Pacific Innovation Center

Areas: Engineering, Modeling Dynamical Systems with Mathematica, System Modeling, Systems Engineering

Daniel Sze is a research fellow at the Georgia Pacific Innovation Center, working with dynamic system modeling to realize a new way to conduct research, tests and exploration in a much more cost-effective and timely way.

Sze’s work focuses on quickly building interactive design tools and dynamic system modeling of some of Georgia Pacific’s largest papermaking systems. Dan is currently supporting an initiative to model large papermaking machines using Wolfram System Modeler, producing a GUI to easily change parameters related to friction, torque, speed and other variables to better understand the way large papermaking machines function under those circumstances.

2022

Laurent Simon

Professor of Chemical Engineering and Vice Provost for Undergrad Studies, New Jersey Institute of Technology

Areas: Biomedical Research, Chemical Engineering, Computational Thinking, Pharmaceutical, Research and Analysis

Laurent Simon is a professor of chemical engineering and the vice provost for undergraduate studies at the New Jersey Institute of Technology.

Simon’s current research focuses on transdermal drug delivery, protein purification, process modeling and control; these projects involve writing Wolfram Language code that is instrumental in building population pharmacokinetic/pharmacodynamic models and designing transdermal drug-delivery systems. These same research tools, deployed with webMathematica, are now used to enhance chemical engineering curricula with applications in biological engineering.

2022

William A. Sethares

Professor, Electrical and Computer Engineering, University of Wisconsin–Madison

Areas: Computational Humanities, Computational Thinking, Computer-Aided Education, Courseware Development, Engineering, Image and Signal Processing, Image Processing, Signal Processing

Bill Sethares is a researcher and professor of electrical and computer engineering at the College of Engineering at the University of Wisconsin–Madison, focusing on signal processing with applications in acoustics, image processing, communications and optimization.

At the University of Wisconsin–Madison, Sethares attracts students from majors beyond engineering with his computationally rich image processing course material and project-based learning (all Wolfram Language–based, of course!). Sethares is a founding member of the LEOcode project and brings computation to art historians in the form of applications used to find patterns in watermarks and canvases. These can help to identify and date historical papers and paintings.

2022

Ricardo Martínez-Lagunes

Consultant, World Bank and Inter-American Development Bank

Areas: Civil Engineering, Data Analysis, Data Analytics, Data Science, Economic Research and Analysis, Environmental Engineering, Research and Analysis

Ricardo Martínez-Lagunes is a consultant for both the World Bank and the Inter-American Development Bank. His main professional activities currently focus on water resources policy, information systems for water resource management and environmental economic accounts and assessments.

Martínez-Lagunes is using Wolfram technologies to develop the next generation of computational water policy analytical tools to better understand and tackle challenges such as improving water utilities. In addition, he has demonstrated the ability to ingest large and disconnected datasets, compute and visualize that information more efficiently and create computationally dynamic dashboards for decision makers for policy design for investment/funding initiatives.

2022

Tetsuo Ida

Professor Emeritus, University of Tsukuba

Areas: Computational Humanities, Geometry, Software Development

Tetsuo Ida is a professor emeritus in the department of computer science and faculty of engineering, informatics and systems for the University of Tsukuba.

Ida contributed greatly to expanding the use of computation in art, and is a pioneer of computational origami in particular. He and his team treat origami as a subject of art and a science and technology of shapes. They developed a software system called Eos (E-origami system) to reason about origami computationally. Eos is written in Wolfram Language and is available as a package for Mathematica.

2022

The Geva Research Group, Compute-to-Learn Project

University of Michigan Ann Arbor, accepted by Ellen Mulvihill

Areas: Chemistry, Computational Thinking, Computer-Aided Education, Courseware Development, Education

The Compute-to-Learn project provides students with the opportunity to engage in creative forms of active learning. Compute-to-Learn activities stem from evidence-based, student-centered learning approaches, such as emphasis on real-world applications to promote students’ integration of new ideas, as well as authentic, collaborative environments that apprentice students as members of a scientific discipline (via practices such as explanatory writing and peer review). Students participate in tutorials and training related to Mathematica; research and propose an original Demonstration idea; workshop the idea during design and production stages; and, finally, submit the final product to external review prior to publication and dissemination on the Wolfram Demonstrations Project website. The Compute-to-Learn pedagogy is implemented within a peer-led honors studio environment. It has been offered in the University of Michigan chemistry department since 2015.

2022

Paul R. Garvey

Distinguished Chief Engineer/Scientist, The MITRE Corporation

Areas: Authoring and Publishing, Data Analysis, Data Analytics, Economic Research and Analysis, Modeling Dynamical Systems with Mathematica, Risk Analysis, Risk Management, System Modeling

Paul R. Garvey is a distinguished chief engineer/scientist at The MITRE Corporation, a not-for-profit organization operating federally funded research and development centers for the US government. He has decades of experience in systems operations research, network modeling, mission systems risk analyses, and the application of risk-decision analytics across a variety of problems in the federal government. His current work involves modeling the network structure of the US food supply chain, which is being done in collaboration with datasets and published studies by the University of Illinois Urbana-Champaign (UIUC) research team led by Professor Megan Konar.

Garvey has authored several textbooks, written numerous papers, holds a US patent, and continues to contribute his expertise and extensive Wolfram Language abilities to tackle big problems. One example is his work “US Food Supply Chain Security: A Network Analysis,” in conjunction with UIUC.

Utilizing Mathematica’s network modeling technologies, they identified critical US counties and links associated with the meat supply chain, which is characterized by 2,817 US counties (nodes) and 30,670 origin-to-destination links (edges) that exist between them.

2021

James C. Wyant

Professor Emeritus of Optical Sciences and Computer Engineering, University of Arizona

Areas: Biomedical Research, Education, Physics, Software Engineering

James C. Wyant was the founding dean of the College of Optical Sciences. He was also the founder of the WYKO Corporation. His company is known for having manufactured and sold phase-shifting interferometers for testing optics that later were used for measuring the shape of the recording heads used in computer hard-disk drives. At one point, every major manufacturer of hard-disk drives globally purchased WYKO instruments to test the recording heads of their drives. He founded another company in 2002 known as 4D Technology. There, he developed single-shot phase-shifting interferometers that, unlike other interferometers, give accurate results in the presence of vibration and air turbulence, thus making them very useful in manufacturing environments.

2021

Virginia Tech Math Emporium

Areas: Authoring and Publishing, Courseware Development, Education, Mathematics, Software Development

Virginia Tech’s Math Emporium was established over 20 years ago. Over the years, nearly eight thousand students have been served through the Math Emporium each semester, in courses ranging from precalculus to geometry and mathematics of design. Many peer institutions have adopted the emporium model, which uses computer-based resources and emphasizes active learning and retention. Mathematica has served as the foundation for Virginia Tech’s Math Emporium. Quiz questions are created as modules, allowing for thousands of variations for a single “question.” An in-house package has been built and expanded over the years, housing thousands of functions, from formatting to building XML files, for use in the Math Emporium testing system. Additionally, Mathematica has been used to create portions of the Math Emporium’s online textbooks and to conduct assessments for the department of mathematics.

Award accepted by Jessica Schmale, senior mathematics instructor.

2021

Enrique Vílchez Quesada

Professor, Computer Science School of the National University of Costa Rica

Areas: Courseware Development, Education, Mathematics, Programming

Enrique Vílchez Quesada teaches courses in mathematics, operations research and programming fundamentals. His research is primarily associated with different activities and projects related to the development of computerized educational software and materials. He has served as coordinator of the systems engineering area and deputy director of the Computer Science School of the National University of Costa Rica. Enrique has received several distinctions in Costa Rica for his outstanding performance and professional career in teaching and research. He is an associate member of the Latin American Committee for Educational Mathematics (CLAME) and the author of more than 50 scientific and dissemination articles in the areas of mathematics and educational informatics.

2021

Fernando Sandoya

Principal Professor, Escuela Superior Politécnica del Litoral

Areas: Business Analysis, Data Science, Education, Machine Learning, Software Development

Fernando Sandoya currently teaches at the post-graduate level and oversees research and development of new products in context of consulting business. Among his notable projects are the development and implementation of an intelligent assistant for optimal sequencing of production in the largest food manufacturer in Ecuador (PRONACA); the development and implementation of a system for optimization of the reverse logistics of used tires across Ecuador (SEGINUS); the development of descriptive and predictive analytical model for land transportation of containers to the Ports of Guayaquil (Spurrier Group); and professional training programs in business intelligence, data science, machine learning and models for Ecuadorian universities. Dr. Sandoya is currently working to develop a machine learning system for Redclic and holds development contracts with an additional dozen companies.

2021

Leonardo Roncetti

Project Director for Offshore Structures and Maritime Works, TechCon Engineering and Consulting

Areas: Data Analysis, Engineering, Risk Management, Software Development, Structural Engineering

Leonardo Roncetti created data analysis and decision-making process for critical lifting operations of personnel on offshore platforms by crane to increase the safety of this extremely dangerous field. He is also known for creating a methodology that utilizes artificial intelligence to monitor cracks in concrete or steel structures in real time to prevent collapse and study damage over time. This methodology can be used in structures such as dams, bridges, nuclear power plants, buildings, hazardous-content storage tanks and many other large structures. He is an often-sought-after expert regarding structural failures and accidents of many types and has appeared and/or been interviewed about such across many media outlets.

2021

Edmund Robinson

Director of Data Analytics, Afiniti

Areas: Actuarial Sciences, Data Analysis, Data Analytics, Data Science, Industrial Mathematics, Risk Analysis, Risk Management, Software Development

Edmund Robinson is an industrial mathematician and software developer who has made many noteworthy contributions in the fields of fund and risk management as well as reinsurance. His prominent work includes the creation of interactive visualizations to provide breakdowns and comparisons of funds on the fly; generation of highly formatted performance figures with financial measures and statistics; summary infographics and PDF export; and rapid modeling, simulation and analysis of bespoke contract structures with interactive data, model and parameter selection. Edmund has also given talks focusing on workflows that combine third-party geographic information system (GIS) datasets with the contract loss distributions to produce a dynamic tool to estimate and visualize incurred but not reported (IBNR) claims related to a windstorm event and historical analysis of sunny-day flooding occurrences and forecasting with time series analysis.

2021

David J. M. Park Jr.

Developer

Areas: Authoring in Mathematica, Calculus, Software Development

David J. M. Park Jr. develops applications in the Wolfram Language. In the past he worked on technical computer programming and the engineering of cesium beam tubes used in atomic clocks in satellites. He has used Mathematica since Version 2 and developed and sold packages such as Tensorial for tensorial calculus and presentation software for producing custom graphics and presentations for earlier versions of Mathematica. He currently is coauthoring a Grassman calculus application, which is in beta-testing development.

2021

Scot Martin

Gordon McKay Professor of Environmental Engineering, School of Engineering and Applied Sciences, Harvard University

Areas: Authoring and Publishing, Data Analysis, Data Science, Engineering, Environmental Engineering, Physics

Scot Martin is currently a Gordon McKay Professor of Environmental Engineering and has previously held positions as an assistant professor at the University of North Carolina at Chapel Hill and a NOAA Postdoctoral Fellow in Climate and Global Change at MIT. His research focuses on engineering solutions to the major environmental challenges presently facing the world. Scot’s laboratory works specifically on problems of air and water pollution and their effects on climate change. His current research has a focus on connections among plant emissions of volatile organic compounds, particle-phase secondary organic material and climate. Martin is currently working to complete a book on aerosol science and technology and is developing a HarvardX course on thermodynamics.

2021

Jang-Hoon Lee

Professor of Mathematics, Paju Girls' High School

Areas: Authoring and Publishing, Computational Thinking, Education, Mathematics

Jang-Hoon Lee is a professor of mathematics at Paju Girls’ High School and the most famous Mathematica user in South Korea. He has introduced Wolfram’s software to millions of users and extensively incorporated it to his teaching. This includes developing an online Mathematica textbook for his students, called Mathematica LAB. He also opened the Mathought.com website and creates math content using Mathematica for Naver.com, where he has 20 thousand subscribers and 6.5 million cumulative views. Due to this and other initiatives, he has won the Korea Mathematics Education Award from the Ministry of Education of South Korea and the Science Teacher of the Year Award from the Ministry of Science and Technology Information and Communication of South Korea.

2021

Dr. Carol Johnstone

Senior Scientist, Particle Accelerator Corporation

Areas: Applied Mathematics, Biomedical Research, Computational Physics, Computer Science, Data Science, Mathematical Biology, Optimization, Physics

Dr. Johnstone is an internationally recognized senior accelerator physicist at Fermilab and Particle Accelerator Corporation. Her work was initially created to solve a simple set of approximate, thin lens optics equations simultaneously with geometric orbit equations. These constraint equations provided physical and field parameters that insured stable machine performance in novel accelerators for high energy physics research, such as the muon collider or Neutrino Factory. Her work evolved into a powerful new methodology for advanced accelerator design and optimization, which has since been applied to innovations in accelerators for radioisotope production, cancer therapy, security and cargo scanning, radiopharmaceuticals and green energy production. Dr. Johnstone’s efforts have resulted in the creation of a now-patented design for a non-scaling fixed-field gradient accelerator. Her work has also helped lead to the now-under-construction National Center for Particle Beam Therapy and Research in Texas, which will be the most advanced cancer therapy center in the US.

2021

Ming Hsu

William Halford Jr. Family Associate Professor, Haas School of Business and Helen Wills Neuroscience Institute, University of California, Berkeley

Areas: Biomedical Research, Complexity Science, Economic Research and Analysis, Economics, Software Development

Ming Hsu is an economist and neuroscientist who studies how people make decisions, in terms of both the hardware (i.e. the neural systems that make decision making possible) and software (i.e. the computations that these neural systems perform). He has used Mathematica extensively since his doctoral work at Caltech, studying the formation and evolution of prices in experimental double auction markets. Subsequent work focused on developing new computational models of choice behavior in decisions under uncertainty and relating these models to behavioral and neural data. In the future, he hopes to utilize the text-analytic capabilities of Mathematica to broaden the range of cognitive functions captured in current models of decision making.

2021

Houston Methodist Research Institute

Areas: Biomedical Research, Biostatistics, Biotechnology, Mathematical Biology, Mathematical Modeling

Houston Methodist is a leading academic medical center that takes a multidisciplinary approach to changing the face of medicine. Doctors Cristini, Butner and Wang are a team of engineer scientists at the Houston Methodist Research Institute who use mathematical modeling to study biological problems, with a special focus on disease progression and treatment. They design and implement mathematical descriptions of the key biophysical phenomena within the tumor microenvironment. They are currently working to establish methods to use mathematical modeling to predict cancer-patient response to immune checkpoint inhibitor immunotherapy. Mathematica has played a key role in this process, allowing them to rapidly implement and update model versions, perform testing and optimization, and conduct extensive analysis on large sets of patient data.

Award accepted by Dr. Joseph D. Butner, faculty fellow, Mathematics in Medicine program; Dr. Vittorio Cristini, professor and director, Mathematics in Medicine program; and Dr. Zhihui Wang, research scientist and associate professor, Mathematics in Medicine program.

2021

Bill Gosper

Mathematician and Programmer

Areas: Computer Science, Education, Software Development

Bill Gosper was part of the group at MIT that produced HAKMEM, also known as AI Memo 239, a large collection of computer and mathematical hacks, some of which are now quite famous. Stephen Wolfram refers to Bill as “Ramanujan-like” for his prolific production of mathematical results. Bill has invented several algorithms for symbolic computation, including ones for symbolic summation and continued fractions. In more recent times, Bill has been working with the next generation of amazingly bright students, producing remarkable and very surprising research results.

2021

General Vibration Corporation

Areas: Engineering, Internet of Things, Software Development

General Vibration is a corporation that focuses on improving the foundation of haptics. The General Vibration team first developed a novel force feedback joystick, and later focused on synchronized vibration of inexpensive eccentric rotating mass vibration motors, which are commonly found in game controllers as well as mobile phones. Sony Interactive Entertainment licenses the company’s entire haptics (intellectual property) portfolio, which means that their architecture underlies technology like the Sony PS5’s Sony DualSense wireless controller, released in November 2020. General Vibration has been granted more than 20 patents in the US, Asia and Europe, with more pending.

Award accepted by Rob Morris, chief scientist and co-inventor.

2021

Richard Carbone

Digital Forensic Analyst & Researcher, Defence R&D Canada

Areas: Data Analysis, Data Science, Research and Analysis, Software Engineering

Richard Carbone is a digital forensic analyst and researcher at Defence R&D Canada, where his work involves investigations into advanced persistent threats, state actors and insider threats. He writes and designs tools using Mathematica to solve certain digital forensic problems that have not been adequately addressed by the community or by digital forensic software vendors. (The growth in Mathematica’s image processing capabilities specifically has made it a useful tool in digital forensics.) Examples of his prototyped tools include a forensic image analysis system and a binary file analysis system, the latter of which helps the user visually identify the underlying data and structure patterns inherent in most file formats. Carbone additionally has conducted research with federal law enforcement to define Canada’s standards for forensic analysis of computer memory.

All Recipients:

By Year:

By Area of Interest:

See More