WOLFRAM

Wolfram Innovator Award

Wolfram technologies have long been a major force in many areas of industry and research. Leaders in many top organizations and institutions have played a major role in using computational intelligence and pushing the boundaries of how the Wolfram technology stack is leveraged for innovation across fields and disciplines.

We recognize these deserving recipients with the Wolfram Innovator Award, which is awarded at the Wolfram Technology Conferences around the world.

2024

David G. Stork

Stanford University

Areas: Computer Graphics and Visual Arts, Computer-Aided Education, Engineering, Image Processing, Machine Learning, Materials Science, Mathematics, Visualization

David G. Stork is an adjunct professor of electrical engineering, symbolic systems and material science and engineering, as well as an adjunct lecturer in computational mathematics and engineering at Stanford University, where he considers Mathematica to be a valuable teaching tool and resource. Here, he developed and teaches Computational Symbolic Mathematics, a Mathematica-based course for using computer algebra for solving difficult non-numerical mathematical problems. Stork is a graduate in physics from the Massachusetts Institute of Technology (MIT) and the University of Maryland. He has held faculty positions at Wellesley and Swarthmore Colleges; Clark, Boston and Stanford Universities; and the Technical University of Vienna. Stork has been a long-time friend of Wolfram, using Mathematica in teaching and research. He holds 64 US patents and has published over 220 scholarly papers and nine books and proceedings volumes, including Pattern Classification, Second Edition and Pixels & Paintings: Foundations of Computer-Assisted Connoisseurship.

2024

Pedro Fonseca

SUEZ

Areas: Computational Thinking, Engineering, Image Processing

Pedro Fonseca earned his degree in environmental engineering with a specialization in sanitary engineering from Universidade NOVA de Lisboa, Portugal. He has since built an international career focused on the detailed engineering of water treatment plants within the SUEZ Group, with professional experiences in Paris, France; Virginia, United States; and Lisbon, Portugal. Since 2012, Fonseca has managed the hydraulic discipline, contributing significantly to the research and development of new products and leading the basic and detailed hydraulic design of water treatment plants around the world.

Fonseca’s passion for education drives his engagement with Wolfram Language, which he first encountered in 2006 (Version 5.2) while pursuing a second degree in applied mathematics. Over the years, he has integrated Wolfram technologies, including Mathematica and System Modeler, into various aspects of his work and personal projects. These tools play a crucial role in his product development efforts, such as data mining, algorithm development and the creation of digital twins for design verification and optimization. Fonseca has also actively participated in multiple Wolfram Research activities, primarily in France, including boot camps, summer schools and product demonstrations.

2024

Europa Clipper Technical Resources Modeling Team

Jet Propulsion Laboratory

Areas: Aerospace, Computational Physics, Data Analysis, Data Analytics, Engineering, System Modeling, Systems Engineering

David Wagner, Andres Rivera, Emma Dodd, Narek Shougarian, David Coren and Reidar Larsen, members of the Europa Clipper project system engineering team at Jet Propulsion Laboratory (California Institute of Technology), used Wolfram Language and System Modeler as part of a large multiphysics simulation system used to validate requirements against performance of the design of the spacecraft intended to probe subsurface water on Jupiter’s moon Europa. Analysis provided by these models enabled the project to zero in on a workable design for an extremely complex mission and validate that it could achieve the mission’s aggressive requirements. The models continue to be used to validate mission plan updates into operations.

2023

Peter Taborek

Professor of Physics and Astronomy, University of California, Irvine

Areas: Computer-Aided Education, Education, Engineering, Physics

Peter Taborek’s research is in experimental condensed matter physics, and he teaches mathematical methods for the physical sciences to undergraduate and graduate students in physics, chemistry and engineering. Most of the standard textbooks for this subject were written before the era of personal computers and do not equip students with the tools of modern technical problem solving. To remedy this situation, Taborek has developed his own e-textbook, MathematicaHandbook, which is written entirely in Wolfram Notebooks.

The text covers traditional topics, such as complex analysis, linear algebra and ordinary and partial differential equations, but explains and illustrates concepts using computer algebra, graphics and numerics. This text has been used for over a decade and includes many figures, animations and live code so students can perform computations while learning course concepts. Student learning requires numerous practice problems with grading and feedback. For a large undergraduate class, this is labor-intensive, so Taborek has developed a web-based platform to deliver homework problems, which are graded using calls to Wolfram Cloud APIs.

2023

Alexandre Leite

Engineering Director & Mechatronics, Austral Dynamics

Areas: Control Engineering, Engineering, System Modeling

Alexandre Leite is a case of a PhD who became an entrepreneur. He currently holds a master’s and PhD in engineering and space technologies from Instituto Nacional de Pesquisas Espaciais and a degree in technology in automation from Instituto Federal Fluminense. He is experienced in the design of feasible mechatronic systems for several industry sectors and proportional–integral–derivative (PID) controllers.

He is a cofounder of Austral Dynamics, which started in 2017 as a spinoff of MWF Services. Austral developed its own hardware-in-the-loop platform called ASTURIAN. This technology allows engineers to use Functional Mock-up Unit (FMU) models generated by Wolfram System Modeler as real-time simulation mock-ups. Some applications are in agriculture machinery and commercial/heavy-duty vehicles. Currently, Austral is developing many business and technological initiatives in the field of electric powertrains for heavy vehicles.

2022

Daniel Sze

Research Fellow, Georgia Pacific Innovation Center

Areas: Engineering, Modeling Dynamical Systems with Mathematica, System Modeling, Systems Engineering

Daniel Sze is a research fellow at the Georgia Pacific Innovation Center, working with dynamic system modeling to realize a new way to conduct research, tests and exploration in a much more cost-effective and timely way.

Sze’s work focuses on quickly building interactive design tools and dynamic system modeling of some of Georgia Pacific’s largest papermaking systems. Dan is currently supporting an initiative to model large papermaking machines using Wolfram System Modeler, producing a GUI to easily change parameters related to friction, torque, speed and other variables to better understand the way large papermaking machines function under those circumstances.

2022

William A. Sethares

Professor, Electrical and Computer Engineering, University of Wisconsin–Madison

Areas: Computational Humanities, Computational Thinking, Computer-Aided Education, Courseware Development, Engineering, Image and Signal Processing, Image Processing, Signal Processing

Bill Sethares is a researcher and professor of electrical and computer engineering at the College of Engineering at the University of Wisconsin–Madison, focusing on signal processing with applications in acoustics, image processing, communications and optimization.

At the University of Wisconsin–Madison, Sethares attracts students from majors beyond engineering with his computationally rich image processing course material and project-based learning (all Wolfram Language–based, of course!). Sethares is a founding member of the LEOcode project and brings computation to art historians in the form of applications used to find patterns in watermarks and canvases. These can help to identify and date historical papers and paintings.

2021

Leonardo Roncetti

Project Director for Offshore Structures and Maritime Works, TechCon Engineering and Consulting

Areas: Data Analysis, Engineering, Risk Management, Software Development, Structural Engineering

Leonardo Roncetti created data analysis and decision-making process for critical lifting operations of personnel on offshore platforms by crane to increase the safety of this extremely dangerous field. He is also known for creating a methodology that utilizes artificial intelligence to monitor cracks in concrete or steel structures in real time to prevent collapse and study damage over time. This methodology can be used in structures such as dams, bridges, nuclear power plants, buildings, hazardous-content storage tanks and many other large structures. He is an often-sought-after expert regarding structural failures and accidents of many types and has appeared and/or been interviewed about such across many media outlets.

2021

Scot Martin

Gordon McKay Professor of Environmental Engineering, School of Engineering and Applied Sciences, Harvard University

Areas: Authoring and Publishing, Data Analysis, Data Science, Engineering, Environmental Engineering, Physics

Scot Martin is currently a Gordon McKay Professor of Environmental Engineering and has previously held positions as an assistant professor at the University of North Carolina at Chapel Hill and a NOAA Postdoctoral Fellow in Climate and Global Change at MIT. His research focuses on engineering solutions to the major environmental challenges presently facing the world. Scot’s laboratory works specifically on problems of air and water pollution and their effects on climate change. His current research has a focus on connections among plant emissions of volatile organic compounds, particle-phase secondary organic material and climate. Martin is currently working to complete a book on aerosol science and technology and is developing a HarvardX course on thermodynamics.

2021

General Vibration Corporation

Areas: Engineering, Internet of Things, Software Development

General Vibration is a corporation that focuses on improving the foundation of haptics. The General Vibration team first developed a novel force feedback joystick, and later focused on synchronized vibration of inexpensive eccentric rotating mass vibration motors, which are commonly found in game controllers as well as mobile phones. Sony Interactive Entertainment licenses the company’s entire haptics (intellectual property) portfolio, which means that their architecture underlies technology like the Sony PS5’s Sony DualSense wireless controller, released in November 2020. General Vibration has been granted more than 20 patents in the US, Asia and Europe, with more pending.

Award accepted by Rob Morris, chief scientist and co-inventor.

2019

Dr. Yehuda Ben-Shimol

Senior Lecturer, Ben-Gurion University of the Negev (Communications Systems Engineering Department)

Areas: Education, Engineering, System Modeling, Systems Engineering

Yehuda Ben-Shimol has taught courses in graph theory, queueing theory, information theory and more using Wolfram technologies. Using Mathematica and Wolfram SystemModeler, he developed a series of “virtual labs” that allow hands-on exploration of complex engineering models. Through his published work and ongoing community engagement, Ben-Shimol has exposed thousands of students and faculty members to the benefits of using Wolfram technology in coursework and research.

2015

ValueScape Analytics, Inc

Areas: Data Science, Engineering, Mechanical Engineering

The team at ValueScape Analytics uses the Wolfram Language and Wolfram technologies to build the cloud-based computational back end for their platform. ValueScape is an innovative data science company providing real estate analytics solutions through Valuation Navigator, an iOS application for appraisers and lending institutions. The company leverages the Wolfram Language running in the cloud to provide statistical analysis, visualization, density plots, and geographic data integration.

2013

Charles Macal

Director, Center for Complex Adaptive Agent Systems Simulation, Argonne National Laboratory

Areas: Engineering, System Modeling

As Director of the Center for Complex Adaptive Agent Systems Simulation at Argonne National Lab, Charles Macal uses Mathematica to develop models for studying behavioral factors that contribute to the spread of Methicillin-resistant Staphylococcus aureus (MRSA) and to study how human reactions to political and military action can be quantified and used to simulate when and if conflicts will arise. Macal has been asked to work with the Federal Highway Administration on an innovative new project to develop models for understanding driver behavior for route planning and improving vehicular safety.

2013

Sam Daniel

Engineering Fellow, Raytheon

Areas: Control Engineering, Engineering, Signal Processing

Sam Daniel has been using Mathematica since 1988—the year Mathematica 1.0 was launched—to complete a range of innovative projects from patented work on fingerprint identification algorithms for Motorola to spearheading signal processing projects for Raytheon Missile Systems. His mastery of Mathematica has enabled him to document his work and share those results with others, bringing invaluable insights to areas from adaptive antenna simulation to radar ground clutter characterization. Sam’s continued work with Mathematica will include creating elaborate Enterprise CDFs from Wolfram SystemModeler for possible automatic extraction of parameters and control placement.

2013

Stefan Braun

Managing Director of SmartCAE

Areas: Aerospace, Biotechnology, Chemical Engineering, Control, Data Mining and Analysis, Engineering, Finance, Financial Risk, High-Performance and Parallel Computing, Image Processing, Industrial Engineering, Interface Design, Materials Science, Mathematica Consulting, Mechanical Engineering, Pharmaceutical, Physics, Risk Analysis, Signal Processing, Structural Engineering

Stefan Braun is recognized for using Mathematica in industrial applications. He has used Mathematica and the SmartCAEFab in more that 150+ industrial projects in different application areas. SmartCAE’s software solutions allow practical users to simulate complex applications problems, with a lot of parameters, without being a simulation or Mathematica expert.

All Recipients:

By Year:

By Area of Interest:

See More